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Abstract: Although digoxin is important in heart rate control, the utilization of digoxin is declining 

due to its narrow therapeutic window. Misdiagnosis or delayed diagnosis of digoxin toxicity is 

common due to the lack of awareness and the time-consuming laboratory work that is involved. 

Electrocardiography (ECG) may be able to detect potential digoxin toxicity based on characteristic 

presentations. Our study attempted to develop a deep learning model to detect digoxin toxicity 

based on ECG manifestations. This study included 61 ECGs from patients with digoxin toxicity 

and 177,066 ECGs from patients in the emergency room from November 2011 to February 2019. 

The deep learning algorithm was trained using approximately 80% of ECGs. The other 20% of 

ECGs were used to validate the performance of the Artificial Intelligence (AI) system and to con-

duct a human-machine competition. Area under the receiver operating characteristic curve (AUC), 

sensitivity, and specificity were used to evaluate the performance of ECG interpretation between 

humans and our deep learning system. The AUCs of our deep learning system for identifying 

digoxin toxicity were 0.912 and 0.929 in the validation cohort and the human-machine competition, 

respectively, which reached 84.6% of sensitivity and 94.6% of specificity. Interestingly, the deep 

learning system using only lead I (AUC = 0.960) was not worse than using complete 12 leads 

(0.912). Stratified analysis showed that our deep learning system was more applicable to patients 

with heart failure (HF) and without atrial fibrillation (AF) than those without HF and with AF. Our 

ECG-based deep learning system provides a high-accuracy, economical, rapid, and accessible way 

to detect digoxin toxicity, which can be applied as a promising decision supportive system for 

diagnosing digoxin toxicity in clinical practice.  
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1. Introduction 

Digoxin has been widely used for heart failure (HF) and atrial fibrillation (AF) 

treatment in the past several decades. Guidelines from the American College of Cardi-
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ology/American Heart Association and the European Society Cardiology suggest that 

patients with symptomatic heart failure with reduced ejection fraction (HFrEF), New 

York Heart Association (NYHA) Functional class II–IV, may consider digoxin to reduce 

both all-cause and HF-associated hospitalizations in cases of limited response to standard 

treatment [1–3]. Digoxin is also important in acute heart rate control for patients with HF 

and AF in the absence of pre-excitation, and in resting heart rate control for patients with 

HFrEF [4]. All the evidence supports the indispensable role of digoxin in clinical practice. 

However, digoxin toxicity accounts for 0.3% of all the adverse drug events in the 

U.S., among which 82.1% were hospitalized due to its narrow therapeutic window [5]. 

The in-hospital mortality for a non-digoxin immune Fab (DIF) group was 5.7%, while it 

was 14.3% for a DIF group in patients who were hospitalized for digoxin toxicity [6]. 

Another descriptive observational study revealed 6.4% immediate and 13.4% 30-day 

mortality rates among 171 digoxin poisoning patients in the emergency departments 

(EDs) [7]. For those with digoxin toxicity causing potentially life-threatening hyper-

kalemia, cardiac rhythm disturbances, or both, early administration of digoxin-specific 

Fab antibody fragments may improve mortality rate and has a class I indication [8–10]. 

The results highlight critical effects of digoxin toxicity. 

Nonetheless, laboratory investigation for serum digoxin concentration (SDC) is 

time-consuming and might not be available in all hospitals. SDC may be dynamic, which 

is confounded by several comorbidities, including acute kidney injury, low cardiac out-

put, or concomitant use of other drugs [11]. In fact, the narrowing in the therapeutic to 

toxicity window, difficult dose adjustment, and poor accessibility of serum concentration 

have markedly limited the use of digoxin. 

The epidemiology of digoxin toxicity accounts for about 1% of patients with con-

gestive HF who are treated with digoxin [12]. The pharmacological effect of digoxin may 

be manifested by electrocardiography. The electrocardiographic manifestations for di-

goxin toxicity are well documented, including sinus bradycardia, AF with slow ventric-

ular response, atrioventricular and intraventricular conduction disturbance, 

down-sloping ST-T alterations (especially at leads V4 to V6, lead II, III, aVF), ST segment 

elevation in leads aVR and V1, shortening of QT interval, atrial tachycardia with block, 

junctional tachycardia, ventricular tachycardia, and frequent premature atrial or ven-

tricular beats. A previous retrospective study demonstrated that 39.2% of digoxin toxicity 

patients’ ECGs are ignored by clinicians [13], and another prospective study revealed 

that only 23.95% of digoxin toxicity patients’ ECGs are recognized by clinicians as posi-

tive findings [14]. These results elucidate the high misdiagnosis and delayed diagnosis of 

digoxin toxicity in clinical practice.  

Artificial intelligence (AI) has been extensively applied in the biomedical fields, includ-

ing cardiovascular risk prediction, and it automates diagnosis of eye diseases, reviews 

pathological slides, and triages urgent findings in head CTs [15–17] to promote health care. 

Moreover, neural networks have been applied to classify the changes in the EEG signal by 

facial expressions [18]. However, there has been no application of AI in the diagnosis of di-

goxin toxicity. In this study, we trained a deep learning model (DLM) to use ECG to identify 

digoxin toxicity and conducted a human-machine competition to verify its performance. 

2. Materials and Methods 

2.1. Database 

The Tri-Service General Hospital, Taipei, Taiwan, provided the research data from 

November 2011 to February 2019. Research ethics approval was given by the institutional 

review board to collect data without individual consent (IRB NO C202005055). Because 

digoxin toxicity is less likely to occur with SDC < 2 ng/mL, the digoxin toxicity cases were 

defined as more than or equal to 2 ng/mL in blood concentration based on laboratory 

testing [19,20]. All ECG within 24 h before or after digoxin toxicity (SDC no less than 2 

ng/mL) samples were collected and were reviewed by our cardiologist. There were a total 
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of 36 cases with SDC no less than 2 ng/mL in our database with documented electrocar-

diography, but 2 of the 36 cases were excluded due to their poor quality, number of arti-

facts, and deviated baseline ECG. We used ICD-9 and ICD-10 codes to define baseline 

comorbidities as following: diabetes mellitus (DM, ICD-9 codes 250.x and ICD-10 codes 

E11.x), coronary artery disease (CAD, ICD-9 codes 410.x to 414.x, and 429.2, and ICD-10 

codes I20.x to I25.x), hypertension (HTN, ICD-9 codes 401.x to 404.x and ICD-10 codes 

I10.x to I16.x), heart failure (HF, ICD-9 codes 428.x, 398.91, and 402.x1, and ICD-10 codes 

I50.x), lipidemia (ICD-9 codes 272.x and ICD-10 codes E78.x), chronic kidney disease (CKD, 

ICD-9 codes 585.x and ICD-10 codes N18.x), chronic obstruction pulmonary disease 

(COPD, ICD-9 codes 490.x to 496.x and ICD-10 codes J44.9), pneumothorax (ICD-9 codes 

512.x and ICD-10 codes J93.x), and atrial fibrillation (AF, ICD-9 codes 427.31 and ICD-10 

codes I48.x), lipidemia (ICD-9 codes 272.x and ICD-10 codes E78.x). Ultimately, we col-

lected a total of 61 ECGs from 34 cases as the digoxin toxicity samples. Other details and 

deep learning model implantation are provided in supplementary information. 

2.2. Deep Learning Model Implement 

We developed a deep learning model called ECG12Net to use 12 lead ECGs for po-

tassium concentration prediction. The technology details, such as model architecture, 

data augmentation, and model visualization, were described previously [21]. 

ECG12Net is an 82-layer convolutional neural network with ECG lead blocks to ex-

tract the important features and an attention mechanism to integrate predictions from 

each lead. Each ECG lead block used the same weights except the last fully connected 

layer. We employed the same architecture to train a new deep learning model for digoxin 

toxicity recognition. The only change in this model is the last layer, which is a logistic 

output revised from linear output. The settings for the training model were as follows: (1) 

Adam optimizer with standard parameters (β1 = 0.9 and β2 = 0.999) and a batch size of 50 

for optimization; (2) learning rate was set at 0.001; and (3) a weight decay of 10−4 [22]. The 

100th epoch model was used as the final model, in which the presented performance in 

the validation set was only evaluated once. 

Because the sampling rate of our machine is 500 Hz, our 12-lead ECG signal includes 

12 numeral sequences with 5000 digits. However, the standard input format of 

ECG12Net is a length of 1024 numeric sequences. We randomly cropped a length of 1024 

sequences as input in the training process. During the inference stage, the 9 overlapping 

lengths of 1024 sequences based on interval sampling (X1 to X1024, X498 to X1521, X995 

to X2018, X1492 to X2515, X1989 to X3012, X2486 to X3509, X2983 to X4006, X3480 to 

X4503, and X3977 to X5000) were used to generate predictions and were averaged as the 

final prediction. (The complete architecture of ECG12Net is shown in Supplementary 

Figure S1).  

Due to significantly uneven distribution of digoxin toxicity cases and controls in our 

study, an oversampling process was implemented to ensure that rare samples were ad-

equately recognized [23,24]. The initial weights of the digoxin toxicity recognition model 

were based on the transfer learning from the potassium concentration prediction model 

[21]. The patients in the training cohort were divided into 5 subgroups, and we used the 

5-fold cross-validation which used 4 of them as a training subset and 1 of them as a tun-

ing subset in each fold. In other words, we totally trained 5 DLMs, and the final predic-

tion in validation cohorts was generated by the average of them. The cut-off point to dis-

tinguish the positive sample was also decided via each tuning subset. 

2.3. Human-Machine Competition 

We evaluated the performance of practicing physicians using a subvalidation co-

hort. All 13 digoxin toxicity ECGs in the validation cohort were included, and 52 normal 

ECGs in the validation cohort were randomly selected for the human-machine competi-

tion. There were 4 emergency physicians and 5 cardiologists participating in this compe-

tition. We defined 5 or more of the 9 clinicians’ answers as human answers in the hu-
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man-machine competition. The disease score of digoxin toxicity, ranging from 0.000 to 

1.000, higher than 0.334 was known as high risk for the AI machine. 

2.4. Statistical Analysis and Model Performance Assessment 

All analyses were based on ECGs from the patients. If more than 1 ECG is collected 

from a single patient, each ECG will be analyzed as independent cases. We presented 

their characteristics as the means and standard deviations, numbers of patients, or per-

centages, where appropriate. They were compared using either Student’s t test or the 

chi-square test, as appropriate. We used a significance level of p < 0.05 throughout the 

analysis. The statistical analysis was performed using the software environment R ver-

sion 3.4.4 (Comprehensive R Archive Network, Vienna, Austria). The software package 

MXNet version 1.3.0 (The Apache Software Foundation, Wakefield, MA, USA) was im-

plemented into our deep learning model. The primary analysis was to evaluate the per-

formance of digoxin toxicity recognition by ECG12Net and clinicians in a ma-

chine-human competition. Receiver operating characteristic (ROC) curve and area under 

curve (AUC) are applied to evaluate the competition results. Additionally, the sensitivity, 

specificity, and balance accuracy of digoxin toxicity recognition by the deep learning 

model and clinical physicians were calculated. The balance accuracy is defined as the 

mean of sensitivity and specificity in the study. The results of the whole validation 

evaluation by the DLM are also presented.  

The secondary analyses were performed on the whole validation set. We tried to in-

clude more clinical information, such as patient characteristics and laboratory test, to im-

prove the model performance. The multivariable logistic regression model was used to in-

tegrate the deep learning model and clinical information. A series of logistic models will 

identify the effects of different clinical information on the performance of digoxin toxicity 

recognition. The AUCs based on the ROC curve are applied to evaluate the change of 

model performance.  

3. Results 

A total of 177,127 ECGs were enrolled in the study (Supplementary Table S1) and 

were divided into either a training cohort (n = 160,916) or a validation cohort (n = 16,211). 

Further stratified analysis divided the cohort into a digoxin toxicity group and a normal 

group by ECG by artificial intelligence ECG analysis (Table 1), which demonstrated that 

patients with digoxin toxicity records were prone to be older and had more comorbidi-

ties, such as atrial fibrillation (AF), hypertension, HF, coronary artery disease (CAD), 

chronic obstructive pulmonary disease (COPD), hyperlipidemia, and chronic kidney 

disease (CKD), and had higher serum potassium levels, lower serum sodium levels, 

higher serum blood urea nitrogen levels, higher serum creatinine levels, and worse es-

timated glomerular filtration. 

Table 1. Corresponding patient characteristics and laboratory results in digoxin toxicity ECGs and 

normal ECGs. 

Patient Characteristics 
Digoxin Toxicity 

(n = 61) 

Normal 

(n = 177,066) 

p-Value 

 

Dataset   0.001 

Training cohort 48 (78.7%) 160,868 (90.9%)  

Validation cohort 13 (21.3%) 16,198 (9.1%)  

Gender (male) 39 (63.9%) 92,684 (52.4%) 0.070 

Age (years) 83.0 ± 7.0 63.4 ± 19.5 <0.001 

Height (cm) 163.8 ± 7.1 162.0 ± 18.3 0.585 

Weight (kg) 60.1 ± 6.5 63.8 ± 14.1 0.150 

BMI (kg/m2) 22.5 ± 2.8 24.5 ± 8.1 0.177 

DM 17 (27.9%) 47,900 (27.1%) 0.886 
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Patient Characteristics 
Digoxin Toxicity 

(n = 61) 

Normal 

(n = 177,066) 

p-Value 

 

CAD 34 (55.7%) 43,808 (24.7%) <0.001 

Hypertension 54 (88.5%) 79,220 (44.7%) <0.001 

HF 31 (50.8%) 20,730 (11.7%) <0.001 

Lipidemia 31 (50.8%) 53,437 (30.2%) <0.001 

CKD 10 (16.4%) 23,356 (13.2%) <0.001 

COPDPP 27 (44.3%) 38,946 (22.0%) <0.001 

Pneumothorax 0 (0.0%) 893 (0.5%) <0.001 

AF 42 (68.9%) 12,497 (7.1%) <0.001 

K (mEq/L) 4.4 ± 0.8 3.9 ± 0.6 <0.001 

Na (mEq/L) 134.3 ± 3.9 136.3 ± 4.8 0.002 

Cl (mEq/L) 100.6 ± 6.3 102.3 ± 5.7 0.171 

TCa (mg/dL) 8.8 ± 0.9 8.5 ± 0.7 0.198 

FCa (mg/dL) 4.5 ± 0.2 4.4 ± 0.3 0.074 

Mg (mg/dL) 2.1 ± 0.3 2.1 ± 0.3 0.833 

Tro I (pg/mL) 0.1 ± 0.2 0.3 ± 3.4 0.772 

BUN (mg/dL) 59.5 ± 42.9 26.0 ± 22.8 <0.001 

Cr (mg/dL) 2.8 ± 2.6 1.5 ± 2.0 <0.001 

eGFR 35.3 ± 19.8 76.1 ± 38.7 <0.001 

BMI = Body mass index; DM = Diabetes mellitus; CAD = Coronary artery disease; HF = Heart failure; 

CKD = Chronic kidney disease; COPD = Chronic obstructive pulmonary disease; AF = Atrial fibrilla-

tion; K = Potassium; Na = Sodium; Cl = Chloride; TCa = Total calcium; FCa = Free calcium; Mg = 

Magnesium; Tro I = Troponin I; BUN = Blood urea nitrogen; Cr = Creatinine; eGFR = Estimated glo-

merular filtration rate. The significant level was 0.05/25 = 0.002 based on Bonferroni correction. 

3.1. Human-Machine Competition 

Figure 1 shows the summary results of the human-machine competition, and the 

ROC curve was made based on the predictions of the deep learning model. The AUC of 

our AI system in the human-machine competition was 0.929, and only a visiting emer-

gency staff member with five years of experience was superior to our AI system. The AI 

model was noninferior to a visiting emergency staff member with 14 years of experience, 

a visiting cardiovascular department staff member with five years of experience, and an 

emergency chief resident. The AI method was superior to the other participating clini-

cians. The ROC curve analysis was also conducted in the validation cohort, and the AUC 

of our AI system was 0.912, which provided a sensitivity of 84.6%, a specificity of 96.6%, a 

positive predictive value of 1.98%, and an F1 score of 3.87%. The lower positive predic-

tive value and F1 score were due to the rarity of digoxin toxicity cases. 

The consistency analysis of the human-machine competition for digoxin toxicity risk 

prediction by ECG reading is shown in Supplementary Figure S2, which also presents the 

sensitivities and specificities of each physician. Supplementary Figure S2A shows all di-

goxin toxicity ECGs, ranking from lower disease score to higher disease score by AI 

analysis, and the Supplementary Figure S2B shows the selected normal ECGs, ranking 

from higher disease score to lower disease score. The other 39 normal ECGs in the hu-

man-machine competition were consistently considered as negative samples by both our 

AI system and the human experts. The disease score provided by our AI system was con-

sistent with the humans’ consensus. We divided the results into four quadrants. In the first 

quadrant, both humans and the machine had correct answers. In the second quadrant, AI 

had correct answers, but humans did not. In the third quadrant, one case was correctly 

answered by humans but was missed by the machine, and in the fourth quadrant, only 

case A was missed by both humans and the machine. 

ECGs in the first quadrant revealed typical characteristics of digoxin toxicity in 

high-risk cases, such as concave or down-sloping ST-T depression at the inferior and 
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lateral leads, diminished T wave height, and bradycardia with AF with a slow ventricular 

response. For example, in case D (Figure 2A), the electrocardiograph revealed AF with a 

rate of 64 beats per minute and typical down-sloping ST depression from V4 to V6 that 

was unlikely related to left ventricular hypertrophy (LVH). All of the clinicians and AI 

identified the case as high risk. The SDC of case D was 2.6 ng/mL. In the second quadrant, 

there were some nonspecific findings that may have confused the clinicians, such as 

complete atrioventricular block, junctional bradycardia, down-sloping ST depression due 

to ischemia, hypokalemia, or other etiologies [25]. In case N (Figure 2B), the electrocar-

diograph showed complete AV block with 0.5 mm ST depression at leads I, II, and V4 to 

V6, which was suggested as digoxin toxicity by human experts. The AI revealed negative 

results for digoxin toxicity from the electrocardiography, which is the correct answer. In 

the third quadrant, the case B (Figure 2C) electrograph showed sinus rhythm with bi-

geminy ventricular premature complexes (VPCs), which was identified as digoxin tox-

icity by human experts but misdiagnosed by the AI machine. In the fourth quadrant, the 

ECG of case A who had an SDC of 2.5 ng/mL (Figure 2D) revealed a normal sinus rhythm 

electrocardiograph, which was misdiagnosed by all the clinicians and AI. 

 

Figure 1. Performance comparison in digoxin toxicity recognition in the human-machine competi-

tion. The receiver operating characteristic curves (ROC curves) were made by the predictions of the 

deep learning model in the validation cohort (AI-all) and the human-machine competition 

(AI-sub), respectively. The red and blue points represent visiting staff members and residents, re-

spectively. The triangle and square marks represent the emergency physicians and cardiologists, 

respectively. The areas under curve (AUCs) were 0.912 and 0.929 in the validation cohort and the 

human-machine competition, respectively. The sensitivity was 84.6%, the specificity was 96.6%, 

and the probability was 33.4% in the validation cohort. The positive predictive value in the valida-
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tion cohort was 1.98%, which provided an F1 score of 3.87%. prob = probalility; sens = sensitivity; 

spec = specificity. 

3.2. Predictive Abilities of the Individual Lead 

We analyzed all the 12 leads’ predictive abilities. The most valuable leads for di-

goxin toxicity prediction were lead I (sensitivity 92.3%, specificity 88.6%, AUC 0.960), 

lead aVL (sensitivity 84.6%, specificity 87.6%, AUC 0.928), and V6 (sensitivity 92.3%, 

specificity 88.9%, AUC 0.918) (Figure 3). These three leads presented better performance 

compared to the integration of all 12 leads (sensitivity 84.6%, specificity 96.6%, AUC 

0.912). However, the summation of sensitivity and specificity in the integration model 

was not less than the performance of each lead. 

 

Figure 2. Selected ECGs (electrocardiographies) of consistent and inconsistent assessments given by the deep learning 

model and the human experts. (A) The ECG was correctly identified as high risk of digoxin toxicity by both human ex-

perts and AI machine. (B) The ECG was correctly identified as low risk of digoxin toxicity by AI machine, but not by 

human experts. (C) The ECG was correctly identified as high risk of digoxin toxicity by human experts, but not by AI 

machine. (D) The ECG has been misdiagnosed by both human experts and AI machine. 

3.3. Univariable and Multivariable Logistic Regression Analysis 

Univariable and multivariable logistic regression analyses on the digoxin toxicity in 

training cohort are shown in Supplementary Figure S3. Higher SDC is associated with 

male gender (OR: 2.21, 95% CI: 1.19–4.12, p-value: 0.012), older age (OR: 1.09, 95% CI: 

1.06–1.12, p-value: <0.001), lower Body Mass Index (BMI) (OR: 0.91, 95% CI: 0.83–0.99, 
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p-value: 0.038), medical history of CAD (OR: 2.67, 95% CI: 1.51–4.71, p-value: 0.001), hy-

pertension (OR: 19.08, 95% CI: 5.93–61.40, p-value: <0.001), HF (OR: 7.07, 95% CI: 

4.01–12.46, p-value: <0.001), hyperlipidemia (OR: 2.99, 95% CI: 1.69–5.29, p-value: <0.001), 

COPD (OR: 3.93, 95% CI: 2.23–6.92, p-value: <0.001), AF (OR: 29.00, 95% CI: 15.75–53.41, 

p-value: <0.001), higher serum potassium concentration (OR: 1.99, 95% CI: 1.48–2.69), lower 

serum sodium concentration (OR: 0.95, 95% CI: 0.90–1.00, p-value: 0.046), higher serum 

level of blood urea nitrogen (BUN) (OR: 1.02, 95% CI: 1.01–1.03, p-value: <0.001), higher 

serum level of creatinine (OR: 1.16, 95% CI: 1.08–1.24, p-value: <0.001), and worse estimated 

Glomerular Filtration Rate (eGFR) (OR: 0.97, 95% CI: 0.96–0.98, p-value: <0.001). Because of 

the higher missing rates of laboratory tests, we conducted a multivariable analysis only for 

patient demographics and disease histories. Only gender, age, hypertension, and AF had 

independent effects to identify digoxin toxicity. In the subsequent analysis considering the 

laboratory tests, eGFR results were the only laboratory data that had an independent effect 

to identify digoxin toxicity. We attempted to add the predictive ability combined with our 

AI system (Supplementary Table S2). The integration model’s AUC improved from 0.912 

(AI model) to 0.980 (integration model 1) and 0.987 (integration model 2), but there was no 

statistical significance (p-value 0.260, 0.207, respectively). 

 

Figure 3. Lead-specific ROC (Receiver operating characteristic) curves in the validation cohort. ROC curves with speci-

ficity on the x-axis and sensitivity on the y-axis. The cases were defined as the digoxin toxicity ECGs, and the controls 

were defined as the normal ECGs. 

3.4. Diagnostic Capacity in Patients with HF or AF 

Because digoxin has class I indications for HF and AF treatment, we analyzed 

whether HF or AF may interfere with the accuracy of the AI ECG reading. The results are 

demonstrated in Figure 4. For patients with HF, the sensitivity of AI identification is 

100% and the specificity is 90.4%, while for patients without HF, the sensitivity is 60.0% 
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and the specificity is 97.6%. In comparison, for patients with AF, the sensitivity is 77.8% 

and the specificity is 86.3%, while for patients without AF, the sensitivity is 100.0% and 

the specificity is 97.4%. The results revealed a larger AUC in patients known to have HF 

(Figure 4A) but worse AUC for patients with AF (Figure 4B). 

  

(A) (B) 

Figure 4. ROC curves under significant stratified variables. (A) Better prediction of the AI model may be noted with a 

larger AUC in patients known to have heart failure; (B) Worse prediction of the AI model with smaller AUC for patients 

with atrial fibrillation. 

4. Discussion 

Our AI model provides an 84.6% sensitivity and a 96.6% specificity predictive ability 

in the detection of patients with digoxin toxicity. The human-machine competition 

showed that the performance of our AI system was not inferior to cardiologists and ER 

specialists. Interestingly, the performance of the DLM using lead I (AUC = 0.960) was not 

inferior to that using all 12 leads (AUC = 0.912) of the ECG. The information of HF and 

AF enhanced the diagnostic power of digoxin toxicity by our DLM. 

The mechanisms of digoxin on ECG manifestations were studied. Digoxin affects 

multiple cellular processes by inhibition of Na(+), K(+)-ATPase (adenosine triphospha-

tase), which raises the intracellular Ca2+ concentration of cardiac myocytes and induces 

prolongation of cardiac action potential in phase 4 and phase 0, resulting in an increasing 

AV node refractory period, prolongation of the PR interval, and decrease of ventricular 

response [26,27]. At serum concentrations of 0.5 to 1.9 ng/mL, digoxin is prone to de-

crease sympathetic nervous system activity and to augment vagal tone, resulting in 

maximal diastolic resting membrane potential increase and automatic decreases in atrial 

and AV nodal cells. These effects are accompanied by effective refractory period pro-

longation and AV nodal conduction velocity decrease. The shortening of the atrial and 

ventricular refractory periods may cause a short QT interval with secondary repolariza-

tion abnormalities, which affects the ST segments and T waves. In addition, increased vagal 

effects at the AV node may cause a prolonged PR interval. At a higher SDC, digoxin can 

increase sympathetic nervous system activity and prolongation of AV conduction, result-

ing in bradycardia, heart block, or other life-threatening arrhythmias [28]. 

Previous machine learning studies used several variables including drug-to-drug 

interaction, demographic items, laboratory items, and medical history to set up optimal 

SDC prediction models with the AUC ranging from 0.533 to 0.912 [29,30]. Importantly, 

our deep learning model predicted high-risk digoxin toxicity patients by ECG only with 

the AUC of 0.912. After adding the clinical information, the predictive capacity improved 
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with the AUC to 0.980, although no statistical significance (Supplementary Table S2, 

p-value 0.260, 0.207, respectively). 

Some consistencies and discrepancies in the prediction of digoxin toxicity exist be-

tween human experts and our AI system during competition. Sixteen out of 26 ECGs 

(61.5%) were correctively answered by both human experts and our AI system. Eight out 

of 26 ECGs (30.8%) misdiagnosed by human experts that were correctively answered by 

the AI demonstrated abnormal conduction and ST segment depression related to ische-

mia or hypokalemia. These results spotlight the strengths of our AI model in the predic-

tion of digoxin toxicity in patients with multiple comorbidities. One out of 26 ECGs mis-

diagnosed by AI that was correctively answered by human experts showed bigeminal 

VPCs. Such evidence reminds us that bigeminal VPCs may be a potential pitfall in the 

prediction of digoxin toxicity by our AI system. One out of 26 ECGs incorrectly answered 

by both AI and human experts displayed a normal ECG presentation. As we have de-

picted above, and as reported by Anandhi et al., only 23.95% of patients with serum car-

diac glycoside poisoning had their electrocardiographs recognized as indicating toxicity 

[14]. Gulsum Limon et al. reported that 11 of 28 patients with digoxin toxicity had no 

ECG change [13]. Thus, clinicians should still be careful during history taking, even 

though the electrocardiograph reveals normal findings, which were not identified by the 

AI system. 

Importantly, our DLM had a high predictive ability of digoxin toxicity in lead I, with 

AUC 0.960, which is superior to the summation of the 12 leads. The characteristic 

presentation of digoxin toxicity demonstrates down-sloping ST segment depression in 

lead I. Meanwhile, Leads aVL and V6 have the second- and the third-best predictive 

abilities, with AUCs of 0.928 and 0.918, respectively. Studies from Saner HE et al. sug-

gested that normal ST segments in lead I, lead aVF, V5, and V6 may exclude the presence 

of a >1.3 ng/mL SDC [19], which is compatible with our findings (Figure 3). Although the 

AUC (0.912) of our AI system using 12 leads seemed worse than that using each of the 

three leads, the performance regarding the summation of sensitivity and specificity using 

12 leads was better than that using each of the three leads. This showed that the infor-

mation of the digoxin effect was mainly contributed from lateral leads, which will require 

further electrophysiological research to elucidate the underlying mechanism. 

To enhance the performance of our DLM, we incorporated the predictive factors of 

digoxin toxicity, including gender, age, hypertension, AF, and impaired renal function, in 

the model and found that such information increased the AUC from 0.912 to 0.987, 

though with no statistical significance. These results indicated that medical information 

may be helpful to increase the diagnostic power of our DLM in the prediction of digoxin 

toxicity. Interestingly, our DLM had better accuracy in detecting digoxin toxicity in pa-

tients with HF and/or without AF than those without HF and/or with AF. The enhanced 

sensitivity of our DLM in the prediction of digoxin toxicity in patients with HF promotes 

its performance. Importantly, only eight patients with HF and four patients without AF 

were included in the validation set for stratified analysis, which accounts for 100% of 

sensitivity, instead of overfitting of the data. Additionally, the low diagnostic power of 

our DLM in patients with AF may be caused by the irregularly irregular rhythms, which 

interfere with the diagnostic capacity of our DLM. These results remind us of the poten-

tial diagnostic difficulties in patients with AF and/or without HF when we apply our 

DLM in the detection of digoxin toxicity. 

Strengths and Limitation 

By training with more than 170,000 ECGs, we set up our DLM to detect digoxin 

toxicity with extraordinary performance. To our knowledge, this is the first study to de-

tect digoxin toxicity merely by AI-assisted ECG. However, several limitations should be 

mentioned. First, this is a single-institute and retrospective study with a limited number 

of digoxin toxicity cases. Second, we only included nine clinicians in the human-machine 

competition, which may not reflect the real-world data. However, previous studies dis-
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closed 23.95% and 60.8% sensitivities of digoxin toxicity identified by human ECG read-

ings [13,14], which are inferior to the clinicians included in this study, with sensitivities of 

61.5% to 92.5% and specificities of 59.6% to 90.4%. Third, due to the rarity of digoxin 

toxicity cases, we applied the simple oversampling method to maintain the balanced 

cases and controls in each batch (the details are shown in Supplementary Materials). This 

process made the higher dependency of cases in each batch, which may hazard the model 

performance. Future studies should collect more digoxin toxicity ECGs to improve the 

DLM performance. Finally, the information regarding lifestyle factors, including smok-

ing and alcoholism, was not included. Based on the current AI model, a prospective and 

large database for AI training may improve the sensitivity and specificity in the detection 

of digoxin toxicity. 

5. Conclusions 

We established a DLM to detect digoxin toxicity in a high-accuracy, economical, 

prompt, and accessible way by ECG, which may initiate rapid correction by DLM to 

prevent catastrophic outcomes and may serve as a convenient tool to monitor digoxin 

toxicity. There will be several promising applications in our DLM, including providing 

decision support and a high-risk alarm system for digoxin toxicity detection in the ED, 

being incorporated into ECG machines in ambulances or remote areas to facilitate tele-

medicine, and being applied to a wearable device for digoxin toxicity detection in 

high-risk patients. Although further study is needed to promote the capacities of our 

DLM and to verify its beneficial effects, our DLM provides an effective decision support 

system to identify digoxin toxicity in clinical practice. 
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